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This is the second annual report submitted i n  accordance with 

the provlsions of Contract No. 950670, "Investigation of Opthuization 

of Atti tude Control System". 

the period September 15, 1965 through June 30, 1966. 

It sunanarizes the research activities of 

This report  i s  in three parts, The first pa r t  out l ines  the pro- 

The technical discussions a r e  given gress during the reporting year. 

i n  Parts B and C, i n  which the conclusions of the results and the plan 

of fu tu re  work a r e  included. 
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1. IN!mommoN 
This annual report  summarizes the r e su l t s  of t he  research achieved 

during the period September 15, 1965 through June 30, 1966. 

the material included i n  this report was presented i n  the two previous 

quarter ly  progress reports. 

an independent document so that no references t o  the previous progress 

reports  a r e  necessary. 

Some of 

The repe t i t ion  makes this annual report  

I n  the design of an autopilot  f o r  a space vehicle which i s  capable 

of performing the task of s o f t  landing, the problem of optimal control 

with bounded phase-coordinate ana bounded control i s  relevant. 

using the necessary and suf f ic ien t  conditions, the general theory f o r  

l i n e a r  autonomous systems was developed. A method of determining the 

optimal control, which i s  a d i r ec t  application of the theory, was 

derived. As an i l l u s t r a t ion ,  two par t icu lar  systems were stadied i n  

de ta i l .  The first example deals with the time-optimal control of an 

unstable booster with actuator  position and rate limits. 

when evaluated with numerical data, agree with those that have been 

published by other authors using d i f f e ren t  methods. 

example considers a f l ex ib l e  vehicle subject t o  wind disturbances. 

By 

The results, 

The second 
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This problem is more canplicated than the first one since the r a t i o  of 

actuator  position t o  i t 8  r a t e  pleys an Important ro le  i n  the extrema1 

control law. The control varieble is found t o  enter  and e x i t  from i t s  

bound a s  often as the time duration permits, which i s  a natural  r e su l t  

of the osc i l la tory  behavior of the system. I n  both examples the opti-  

me1 controls a r e  expressed es e x p l i c i t  time functions. 

and t h e i r  conclusions together with the future  research plen a r e  

presented i n  Par t  B. 

These resu l t s  

The optimal control of antenna pointing direct ion wes investigated. 

The problem i s  formulated i n  such a mnner t h a t  the pointing direct ion 

I s  kept within an accepted region with meximum probabili ty 8x1 the time. 

Essent ia l ly  the control ler  forces the entenna t o  point i n  a desired 

d i rec t ion  by minimizing the error  r a t e  of transmission of infomation 

during the en t i re  f l i g h t  journey of the s p c e  vehicle. 

assumption of the Markovian property of the randm j i t t e r i n g  of the an- 

tenna i s  made. I n  addition, the disturbances i n  any two small :onsecu- 

t i v e  time intervals  a r e  assumed t o  be s t a t i s t i c a l l y  independent. 

the probabili ty d is t r ibu t ion  sa t i s f i e s  the backward diffusion equation, 

and the problem redzces t o  t h e  determination of a control ler  which 

meximiies the probability. 

i t e r a t i o n  procedure w n s  developed. 

conclusions of the resul ts ,  as w e l l  as the plan of future work, a r e  

given i n  Par t  C . 

I n  the study, e n  

Thus 

A computational scheme based on an 

The technical discussion and the 

3. PROFESSIONAL CONTRIlEwTOFG 

Professional personnel contributing t o  the progress during the 

reporting year a r e  as follows: 

J. Y. S . Luh, Principel Investigator 
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PART B 

O m L  CONTROL I N  XWNDED PHASE-COORDINATE PROCESSB 

1. INTRODUCTION 

I n  recent years, milch e f fo r t  has been applied t o  optimal control 

problems with bolmded phase-coordina t e s  . 
Gamkrelidze [ 1 25 t ree  ted the problem based on Pontryagin * 8 meximwn 

Among the  piihlished l i t e r a tu re ,  

pr inciple .  

can he  echieved by solving t h e  relevant calculus of var ia t ions problem. 

Berkovitz. h], however. showed t h a t  Gamkrelidze's r e su l t s  

Dreyfus [43 studied the same problem by means of the dynamic progmming 

formulation. H i s  r e su l t s  a r e  i n  agreement w i t h  that of BeIicovitz [53 .  

Among all'the studies,  sufficiency conditions were v i r t u a l l y  ignored. 

For prac t ica l  applications, even when solutions do ex is t ,  the  necessary 

conditions derived by the verioue authors a r e  d i f f i c u l t  t o  apply. 

For a more r e s t r i c t ed  c lass  of problems, Chaw derived a simpler 

necessary condition [63, and the existence theorems based on an exten- 

sion of Ascoli 's Theorem [73. For l i n e a r  time-optimal control systems 

with a convex r e s t r a i n t  s e t ,  the  necessary condition is el60 suf f ic ien t .  

An elegant proof of the necessity of the condition can be deduced from 

Neustadt's recent work [8] while e rigorous proof of the  rufficlency 

is given by Russell [ 9 ] .  This condition is  an improvement on 

Gamkrelidze's resu l t .  It establishes the f a c t  that  the normal vector 

appearing i n  the modified adjoint  d i f f e ren t i a l  equation is  always out- 

ward with respect t o  the s e t  of a t ta inabi l i ty ,  and hence the necessary 

and suf f jc ien t  condition is re la t ive ly  easy t o  apply. 

.. 
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A s  to  the computational aspects of the problem, there a r e  essentl-  

a l l y  two classes of methods. 

gradient, steepest-descent or  its equivalent, which was studied by 

Dreyfus [4], Denham [lo, 113 and Bryson [E] using the  necessary 

conditions of the optimal control, and by Fkiewonsky, e t  al. [l3] using 

conditions both of the optimal control and from the calculus of 

variations.  

[l53, and Nagata, e t  a l .  [167. 

each cmputetional procedure requires e i t h e r  an iterative solution o r  a 

simulation on a sizable computer. Since a new camputation i s  required 

f o r  each d i f fe ren t  i n i t i a l  s ta te ,  the poss ib i l i ty  of on-line operation 

using currently avzilable f a c i l i t i e s  is out of the question. 

One c lass  includes the  method of the 

The other c lass  was discussed by Kahne [14], Eo and Brentani 

Because of the nature of the  problem, 

An ideal approach is t o  synthesize Q so-called closed-loop optimal 

control ler  so 

This problem, however, is  too d i f f i c u l t  t o  solve. 

is  t o  obtain the so-called open-loop optimal zontrol a s  an exp l i c i t  time 

function f o r  each i n i t i a l  s t a t e .  

2s the  zlosed-loop o p t W 1  control problem, i s  cmplicated enough t h a t  

no published results a re  known. 

solving the open-loop control problem with a bounded phase-coordinate. 

that the control input i s  a function of the current s ta te .  

An a l te rna t ive  approach 

This problem, elthough not so d i f f i c u l t  

"his report  presents a new method of 

I n  the fo l la r ing  sections, a discussion Of the problem is  presented. 

Section 2 defines the problem and outlines the background resul ts .  

Section 3 discusses the method of solving the problem through a reformula- 

tion. 

the optimal control. 

control of an unstable booster. 

The extrelllel control problem for an osc i l la tory  plant  I s  presented In  

Section 5. The study of t h i s  problem is  exhaustive since It includes 

The analysis i s  besed on the  necessary and su f f i c i en t  condition of 

The method is  then applied t o  the time-optimal 

The complete solut ion is  given i n  Section 4. 
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ahmat rU p r i b l e r a t i c m  of control amplitude t o  i t s  rate. Section 6 

a y e s  the conclw~ions of the reeulte while Section 7 out l ines  the plan 

of future worlr. 

2. mxm STATmmTm BAcHIR(xR(D REWLTS 

Consider a l i n e a r  autonanous control  process as  described by the 

d i f fe ren t ip1  system 

jc = Ax + Bu(t) (1) 

i n  I? on the i n t e rva l  [o,t13. A and B are n by n and n by m constant 

= t r ices ,  respectively. 

be 8 non-empty r e s t r a i n t  set i n  ? given by 1 uil 5 ci, i=1,2,. . . ,m. 
It I s  fu r the r  assumed that the system (1) i s  normal, 1.e. the vectors 

Bv, ABw,.**j A n o h  are l i nea r ly  independent where w is a vector havlng 

the di rec t ton  of an edge of the polyhedron R. The problem is to  choose 

an admissible control u ( t )  C Q on to,\] which steer8 the system (1) 

frm a given i n i t i a l  s t a t e  x(0) = xo t o  x ( 5 )  = 0, such tha t  the response 

x(t)  C 0 for all tr r0,t13 and tl is minimal. 

Let a be a closed convex subset of Rn and c) 

GIlnkrtlidze [1,2] and others have given necessary conditions t h a t  the 

extrema1 controls must  sa t isfy.  These necessary conditions imply t h a t  

an extremal control corresponds to  a solution of a set of ad jo in t  equations . 
The adjo in t  solution is allowed cer ta in  jump discont inui t ies  and hence 

depends on a number of parameters representing: 

(a) The magnitudes of the possible j u m p  that appear i n  the ad jo in t  solu- 

t ion,  and 

(b) The time lengths of the arcs of the corresponding t ra jec tory  which 

l i e  on hG, the boundary of the phase coordinate r e s t r a i n t  set G. 

The discont inui t ies  are allowed a t  points where the t ra jec tory  (corres- 

ponding t o  an extram1 control) enters upon o r  exits from an a r c  on W .  
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These are the general results. They do not, however, indicate 

spec i f ica l ly  a t  which points the t ra jectory enters upon the arc, and 

when the t ra jectory must  exit fran it. This paper attempts t o  investi-  

gate these questions. I n  the following section, a refoxmulation of the 

problem is introduced which will lead t o  a method tha t  determines extre- 

nml controls a s  exp l i c i t  t:me functions. 

represented i n  terms of adjoint  solutions. A sufficiency condition given 

by Russell [g] shows that the solutions so obtained a re  optirnal controls. 

Then these functions can be 

3. REFO€WLATION OF "X mBLR4 - 
For a l i nea r  autonanous process, the calculation of t ra jec tor ies  

by the "backing out of the target" procedure is  valid. 

time sense, define T - tl - t and T a [0,tl]. 

becanes 

To reverse the 

Then the system (1) 

&/dT = -AX - k ( T ) ,  (2 )  

with i n i t i a l  condition X(T) = 0 a t  T = 0. L e t  

-A(T-s) B u(s) as, x(T) c G for  a l l  T c  [o,\3: IC CxWlx(.) = -.ro e 
T 

u(s) c n f o r  a l l  se [o,T]] 

be a s e t  of a t t a i n a b i l i t y  a t  'I, then K(?) is the set of all points that 

can be at ta ined i n  time T from 40) = 0 using admieaible controls. 

If T is -11 enough then K(T) is within the i n t e r lo r  of 0, and it 

is known that K(T) is compact, convex, and continuous i n  7 .  

the t ransversal i ty  condition applies a t  h K ( T ) ,  the boundary of K(T); 

and f o r  each point on bK(?), there is a corresponding unique and 

adnissible extrema1 control [ 17 3. 

Moreover, 

When T is large, so(1# segplents of ~ K ( T )  nmy coincide with bo. Since 

CI Is convex by hypotheeis, then K(o) is again convex; and Russe l l  
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[g, pp. 22-53] showed that :  

(a) a t  hlE(r), the t ransversa l i ty  condition is s t i l l  valid i f  the 

cormspanding ad jo in t  system is modified, and 

corresponding t o  each point on hK(?), there  is a unique admlselble (b) 

extrenml control. 

Thus, by (a), for every unit vector  r\ i n  R" there is a 

x corresponding t o  a point on ~K(T) for a fixed T such that 

P of x onto 7: 

P = (71, x) = - r T  7 ' e B u(s) ds  '0 * 
is  a maximum, where ( ) = transpose of ( ), and u(s) C R for 

s t a t e  vector 

the prodection 

By (a )  and (b), the corresponding unique admissible e x t m m l  control 

u (a), which maximizes P, steers the l inear ,  autonomous, nonnal system 

(2) fmm the or igin t o  the fur thes t  point x i n  the d i rec t ion  1 i n  a 

fixed time T .  

* 

This is  equivalent t o  the  case that, with the time sense reversed 

once sore ,  the same extremal control w i l l  steer the system frm x t o  the 

or ig in  i n  a fixed time 7 vhere T i s  minimal. 

t i on  [ 9 ]  shows that the uni t  vector r̂l is  the ad jo in t  vector a t  time T ,  

and the extremal control so obtained i s  the t ime-opt iml  control. 

Russel l ' s  sufficiency condi- 

. Thus, the problem of determining a time-optimal control ler  i s  nuw 

reduced t o  obtaining en admissible extremal control  that maximizes the 

projection P of 8 state vector x a t  a fixed time T ( i n  the sense of 

"bT-cking out of the target")  onto a uni t  vector 1. I n  so doing, it is 

possible t o  f ind  an e x t r e m l  control f o r  every fixed f i n i t e  time T and 

f o r  every uni t  vector 7i: end hence t o  express the extremal controls as 

e x p l i c i t  time functions. Once t h i s  is cmpleted, the s t a t e  vector 

x = X(T) can be 2mputed from the var ia t ion  of prameters  fornula w i t h  

the corresponding extrew.1 control. 



The dolnain of cont ro l lcb i l i ty  of the system can he determined by 

considering the limit of X(T)  as  7 approaches in f in i ty .  

p n e n t s  of x ( T )  approach + QD c?s T approaches QD then the domain of control- 

l a b i l i t y  i s  the en t i r e  s t a t e  spzce. If same caanponents of X(T) approach 

f i n i t e  l imi t ing  values: the domain of cont ro l lab i l i ty  is  a proper subset 

of the s t a t e  space, and the boundary of this dasnain can be determined 

from the limits of x( T)  . 

If all the ccxn- 

- 

4. 'ME mTABEE Boo6m CONTROL PFloFLEM 

Friedland [183 and Toohey rig] have studied the optimal autopi lot  

design problem of an unstable booster with cctuator  posit ion and r a t e  

limits. 

poles i n  the frequency domain: 

ax is  with equal magnitude b u t  opposite signs. 

fur ther  by cancelling the pole a t  the origin through Fhysical design. 

Essent ia l ly  the simplified and n o m l i z e d  unstable booster i s  described 

by a second order d i f f e ren t i a l  equation 

Their simplified plant t ransfer  function consis ts  of three 

one a t  the  or igin and two on the  r e a l  

They simplified the problem 

or, i n  matrix notation 

i n  R2 w i t h  

The problem is: (for a fixed value of u(0) which satisfies lu(0) 1 < 1) 

( a )  To determine the  domin of cont ro l lab i l i ty  ( in  R ) in which every 

point can be steered t o  the or igin by a scalar control u( t )  subject 

t o  the  cme t ra in t s  I u ( t ) l  < 1 and I&)} < D on r 0 , 4  and 

- 
2 

- - 
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X ( T )  = 

s t a t e  i n  

J: [l - cosh (7-s)] v(s)ds 

cr, sinh (T-8)  v(s)ds 

(b) To find a t5.me-optlml control function for each i n i t i a l  

the dammin of controllability. 

Tbis problem w i l l  be formulated as a bounded phase-coord,nate pro- 

blem and solved by the method described above. 

4.1 Bounded Phase-Coordinate Formulation of the Booster Problem 

The systan is augaented by defining x ( t )  = u(t)  and V(t) = i ( t ) .  3 
Then the system (3) can be rewritten as 

S = A x +  b v( t )  (4) 

where 

x =  
21 Ir , A =  

This is a bounded phase-coordinate problem (in the sense I x  1 = 1.1 5 1) 3 
in which the scalar  variable v(t) is required, subdect t o  the constraint 

1v(t)l - < D on Cg,tlj, t o  steer system (4) from an i n i t i a l  s t a t e  X(O) = xo 

t o  x( tl) = o w i t h  minimal tl. 

To proceed by the method of "backing out of the target  x = 0" w e  

write the system ( 4 )  with t i m e  8ense reversed (by defining T = - t ) ,  

h / d T  r -A ~ ( 7 )  - b v(T) ( 5 )  

with x(0) = 0. By the variation of parameters fonnula, the system ( 5 )  

I-- has a solution 

where Iv(s)  1 - < I) is admissible on [ O , T ] .  The adjoint system f o r  the 
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system ( 5 )  i s  

dg/dT = - ( -A) '  $(?) = A'*(?) 

Gamkrelidze h , 2 1  showed that, i n  order t o  represent the extrenml v as a 

multiple of the signum of an adjoint solution f o r  the bounded phase- 

coordinate control problem, the adjoint system must be modified. Thus 

a " to ta l  adjoint vector" p(?) must sa t i s fy  the relation 

In  so doing, the necessary conditions f o r  Y t o  be extrema1 can be 

expressed as 

V(T)  = D sgn r p ( T ) '  (-b)] 

or '47) = D sm rP3(T)1 

where: 

(a) p(?) satisfies the system (7), 

(b) p p )  = o if Ix3(?)l = 1, 

(c)  p ( T )  is  allowed certain jump discontinuitiee a t  endpoints of intervals 

where 1x (?)I = 1 (for t h i s  problem, pl and % are  r e q u i r e d  t o  be 

continuous and jump can occur only i n  p 

and 

3 
since only x is restrained), 3 3 

f+l, if 3 ' O 

0, if P3 = 0 

-1, if p < 0 
sgnp3 =L 3 

Thus, the solution of the systan (7) can be written as 

(9) 

q(?) = q ( 0 )  cosh ? + q ( 0 )  sinh T, 



where the m l u e  

which !x3(z)l < 

= $(I)) slnh ‘I + q ( 0 )  corh t, 

q ( 0 )  cosh 7 + pz(0) 81th ‘I + k, =i J 

of the constant k i n  p ( T )  depend6 

1, and upon %(O) and ~ ~ ( 0 ) .  
3 

1 

12 

upon the in t e rva l  i n  

4.2 The Extrema1 Controls 

To determine extremal controls ae explicit time f u n c t l o n ~ ,  fonn 

t he  proJection P as  defined previously. 

time T be 

L e t  the  uni t  adJoint vector a t  

COS e COB pl 

s i n  8 cos pl , le1 5 d, 161 < x/2. 

’ =  L i n g  

Then, by equations (6) and the def ini t ion of P, 

p = J;: d s ;  ‘I, 0, a’) V b )  CIS 

i n  which 

g ( ~ ;  ‘I, e, a) = cos p’ [cos e - cos e cosh (T-8)  + sin 6 si& (T-s)3 

- s i n  ~8, (11) 

and Iv( s) 1 < D i s  Etdmissihle on [O,r]. 

a t  X(T) on ~K(T), v(s) i s  extreme1 on [o, ‘ I ]  if it x m x ~ z e s  P. 

equation (8), the  only possible values f o r  v(s)  a r e  + 1) and zero. 

!x,l 1, 

either + D or  -D. 

and (13) the value of 1x 1 i s  one. 

Chang’a statement [ Z O ]  t h c t  if t h e  system is time-optimally controlled, 

then e i t h e r  u i s  extrema1 or du/d? is  extremal, 

By the  t r snsversa l l ty  condition - 
BY 

When 
c 

the system (4)  i s  normal and hence the value of v can only be 

If v is  zero on an in te rva l  then by equations ( 8 ) ,  (9) 

This conclusion I s  i n  agreement with 3 



The function g( s; T, 8 ,  @) given by equation (11) has the property 

that 

d s ;  7, 0, pl) = -&; 7, fl + e, - pl); 
hence it suffices t o  coiisider only b l f  of the mngc of e .  For conveni- 

ence, choose -I[ < 6 < 0. Then P m y  be written as - -  

where 

f(s;  T, e, a) = COS e cosh ( 7 - 5 )  - cos e - s i n  e sinh (T-s) + tan 9 
(12) 

To determine the f o m  of the extrema1 v( s) that maximizes P, the 

method given by Schmaedeke and Russell [21] can be used. 

cular problem, however, v(s)  c2n be obtained by inspection fran geanetrical 

For t h i s  prti- 

reasoning. On the i n t e r n 1  0 < s < T the function f(s; ?, e,  @) is ei ther  

monotone or has one mximlun and no minima. 

!cp! < n/Z there a re  two :xises of interest .  

and (b) -n - e 8 e - 3 / 4 .  

I n  fact, for 0 < s < T and 

These are: (a) - 3 / 4  < 6 < 0 - -  

I n  the case (a )  the derivative df/ds C 9 so tha t  f is  monotane 

decreasing i n  s. 

I n  the case (b) f has a maximum a t  sm = ~-tanh 

f o r  tan-’( tanh T) - < 6 

-1 ( tan e ) .  However 

- 3 / 4  where tan-’( tanh 7 )  > -1[ the value of 

s is negative. m 
Thus, f o r  !pll < n/2 and 0 < s < 7 < a, f is  monotone decreasing i n  s if  

-a < tan-l(tanh 1) - < e < O; o r  f has a nraximum a t  sm = ‘I - tanh-l(tan e )  

if -n - < 8 < tan-l (tanh T) < -344 .  

- -  

Furthemore, for any rea l  k, 

f(S,  + k; T, 8,  j8) = f (Sm - k; 7 ,  8,  a) If -X - < 8 < - 3 / 4 ,  

hence f i e  eylrmetric with respect t o  sm. 

fixed 8 and a fixed pl, f( 8 ;  7 ,  8, a) can be sketched on the interval  

Therefore, for a fixed T, a 
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I 
8 
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or 

0 < I < I. 
being monotone decreasing i n  8 and the other to  f having a meximum 

a t  same bm > 3. 

Two typical cases are  shown below, one corresponds t o  f - -  

I n  the caie shown In Fig. 1, the ranges a r e  -3s/4 < 8 < 0 and - 
1 / D  < T 3i’D; hence f I s  monotone decreasing In 8 .  The form of extrema1 - 
V ( 8 )  I s  

-v(s) = { 0 f o r  1 / D  - < 8 < T - I n  (atts) } if pfl > $3 > @,;(14) 
-D for I - In (a- tg)  EI < T 

or  

D for 0 - < s < T - I n  

-D for I - I n  (a+g)  < s < I - -  
or 

g1 = 0 

g2 = -ten-l[cos B[cosh ( T - I I D )  - 11 - s i n  8 slnh (T-L’D)] ,  

= -tan-’[cos Q[cosh (7,’2-1,’2D) - 11 - s i n  8 sinh ( T ’2-1:’2D)}, 3 

a = (COS e - t an  g)/(cos e - s i n  e), end 

B = 3 a2 - (cos e + s i n  e)/(coa e - s i n  e).  

By an inspection of the sketches i n  Fig. 1 with the basic requirement i n  

mind that e i the r  1v(s)1 = D or \u (s) l  = 1 on the en t i r e  in te rva l  9 < 6 < T, - -  
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and 

hence f has a maximum a t  

V(S) i s  

-D f o r  r 
-v(s) = D f o r  1 

L O  for 
o r  

or  

CD f o r  

J D f o r  1 o f o r  
-v(s) = 

\-D f o r  

f - ~  f o r  

I D f o r  

-D f o r  I 

16 

it is easy t o  show that any deviation fran the  46) given above would 

decrease the va lue  of P. 

For the case shown i n  Fig. 2, the ranges are 

-n < tan-’ (tanh 5/2D) 8 - tan’’ (tad 3/D) < - 3 / 4  

+ 1/2D < T < 4 trnh-’ (tan e) -7/D; 

s = T - tanh -1 ( tan  e). The fonn of the extre- m 

(4s, + 1/D) /3  5 S < T - (Z/D) 

T - (2/D) < s < T 

[cash 2/D - 13 - s i n  8 sinh 2/D), and a l l  other 

- -  

parameters were defined previously. 

same argument given i n  the previous case, the extrema1 v(s) must  have the 

present f om. 

By an inspection of Fig. 2 with the 

This procedure w e s  carried o u t  f o r  a l l  the possible cases. It was 

found that the extrema1 4 s )  reaches zero and leaves zero as many as four 
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tines. 

and l e t  r0 = 0 and T = 1. 

tbt 

Denote the t h e  8 a t  which such events occur by Ti, 14,. . .,4, 
supposing the values of x ( 8 )  = u(8) a r e  such 

5 3 

Then 

dp3/da = d$ /ds f o r  T~~ 5 s < T~~ + 18 I = 0, 1, 2; 3 

p3(s) - o f o r  T 2 j  + 15 .e T 2 j  + 2’ j = 0, 1. 

It follows t h a t  choosing p (8) to be continuous a t  TZ1 + 1, (1 = 0,1,2) 

P ~ ( s )  = $3(s) - $3(‘21 + 1 )  for ~ 2 1 5  s < 2 1  + 1’ I = 0, 1, 2. 

3 
requires p (r 21 + 1) = 0, and hence 

W i t h  p (e )  so defined, the jump conditions have to  be sa t i s f i ed  a t  rZ1, 

i = 0, 1, 2. 
3 

Since 7 is the unit ad jo in t  vector a t  hK(T), p3(7) = $,(?) = 

= f13 = s-in pl. 

Thus 

cos 6 [cosh (T-s) - cosh (T-T ) l - s in  6[8lnh (T-s)-sinh (T-T )], 
3 .  3 

where 



Using t h i s  expression fo r  p (s;T,Q,g),it has a t  most one jump disconti-  

n u i t i t y  a t  8 = 'I (equivalently a t  1K(T) ), and t h i s  happens only when 

!x3( t) 1 = 1 U(T) 1 = 1. Furthermore, the exp l i c i t  form of the extrewl v( s)  

can be expressed L?S 

3 

4 s )  = D sen [ P 3 h  T, 8 ,  

= D sgn rP3(s; 7, 0, g/cos PI1 
since cos $3 i s  posi t ive on -n/2 < $5 < n/2. 

ciency 

Finally, by Russell 's suffi- 

collaition [SI, the e x t r a 1  v(s)  i s  a l s o  the t ime-optiml v(s) .  

"he function p (s; T, 8, g )  f o r  the two typical  cases discussed 3 
previously are a l s o  sketched i n  Figs. 1 and 2.  The formulas f o r  para- 

meters T 

ranges -I[  < e < 0, -n/2 < fl < x / 2  end 0 < 'I < a. 

i n  Tables I t o  V I .  

id,. . .,4, 6 and $, are obtained f o r  a l l  possible C A S ~ G  i n  the i' 

The results are l i s t e d  - -  - 

4 .3  Time-optimal Controls f o r  the Booster 

The s t a t e  vector x('I) can be readily cmputed fran equations 

( 6 ) .  Take a typical  case as an example: 

-3n/4 < 8 - < 0, 1 / D  < T - c 3/D, gf2 e $8 < PI1 (see Fig. 1). 

For t h i s  case, the extremnl v(s) is  given i n  equation (14), hence by 

integra t ion over [o, 73, 

5 ( r )  = D sinh ( ~ / D - T )  + D sinh 1-1 + Dln (a + f3) - [a + f3 - l/(a+f3)B/2 

. x Z ( T )  le: D COSh (T-l/D) - D COBh T-D + [a + B - l/(CHp)] D/2 

x,(T) = 1 - D In (a + f3). 

3 
~ ( T )  D 

%(T) 

(1/D - T) + Sinh T - SI& 1/D] 

i 
Let a + p = el lD so tbt x (7) = u(T) = 0, then 

D rcosh ( T  - 1/D) - C O S h  'C - 1 + S i &  1/D3 

for { 1/D < T - < 1/D. A further choice of T = 2.5 /D reduces L e  above t o  
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x1(2.5/D) P N- sinh ( l . s / D )  + sinh (2.5/D) - s i n h ' ( l / D ) ]  

x2(2.5/D) = Hcoeh (1*5/D) - C08h (2.5/D) - 1 + Sinh (1/D)] c x3(2*5/D) = 0 

Using the results so obtained t o  solve the  or ig ina l  booster problem 

a ta ted  i n  equation ( 3 ) ,  m e r a e  the  t h e  sense once again. Thua the 

extrema1 4 8 )  now starts frun 

it follows t h a t  equation (14) 

-4 8 1 
-D for 

s = 7 and backs up t o  8 = 0. 

is now replaced by 

Since 1 = -7, 

t >  - S >  t - 1 / D  

t - 1 / D L  8 > In (a + e) 
I n ( a +  B ) > S > O  - -  

Since dx / d t  = v( t) in equation (4) replaces dx /d? = -v( t) i n  equation 3 3 
( 5 ) ,  hence x = u (sham i n  Fig. 1) now reveraea Its sign. 

above exanple (now t = 2.5/D instead) can be interpreted as follows: 

Thus, the 3 

The control  

m, i f  2 , 5 / ~  - > s > 1 . 5 / ~  

U(S)  = -1, if  L 5 / D  - > 8 > 1/D 

-De, if 1/D - -  > s > 0 i 
w i l l  s t e e r  the or ig ina l  booster control system ( 3 )  from the i n i t i a l  s t a t e  

~ ~ ( 0 )  = D b i n h  (1 .5 /~)  + ~ i n h  ( 2 . 5 / ~ ) -  ~ i n h  ( i / ~ ) 3  

5(0) = D rcosh (105/D) - cash (2.5/D) - 1 + sinh (1 /D)]  { 
with u(0) t 0 ta  the or ig in  i n  the minimum time tl = 2.5/D and u(Z.s/D) = 0. 

This example a l s o  i l l u s t r a t e s  the f a c t  that the parameters 8 and $3 

* 

introduced i n  the ad jo in t  v e c t o r 7  sexve as an a id  t o  derive the extrema1 

v(s) only; they disappear i n  the final solution of the time-optimal control 

problem. 

4.4 Maximum Controllable Region 

The maximum controllable region is determined by examining the 



values of x(?) as t -. OD. Among the t o t a l  of twenty d i f fe ren t  cases f o r  

la rge  T i n  Tables I - VI, the boundary of the region f o r  u = 1 can be 

determined fram the cases of (a)  n/2 > $I > g,, 3/D < ? < - i n  mble I, - 
and (b) n/2 > $ - > $, 3/D C ? < i n  Table VI as follows: 

(a) ~y equations ( 6 ) ,  t h i s  case yields F(T)  = D sinh (1/D - ?) + D sinh T - 1 

-. -1 as ? which gives the equation 5 + l  
”2 

Thus 

L(?) = -D sinh (1/D - ?) -D sinh T + 1 + D sinh (2/D) -2 

{ x,(?) = -D cmh (‘c - 1 / D )  + D cosh T + D - D cash (2/D) 

(X3(?) = -1 + 2 = 1 

Thua 

or 

L 5 + 1 - D Sinh (2/D) 
4 -1 ae T -. 5 - D + D cosh ( 2 / D j  

5 + 3 = -1 + D [l - exp(-Z/D)J for u = 1 (18) 

The boundary of the  region for u = -1 can be obtained fram other c~se8, 

ruch a8 the case of - > P, > -n/2, 3/D < T < QD i n  T8ble I. However, since 

chnnged simultaneously. 

(18), the boundary for u 

- 5 - % = - l  

- % - X , = - l  

Therefore, CO~~ellpondiag to equations (17) and 

= -1 is given,by 

for u = -1 (20) 

+ D [l - exp (-2/D)] for u = -1 (21) 
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The boundary of the region f o r  -1 < u 1 can be found frw the  case 
L -  

of > $ j84, 3/D < 7 < i n  Table I, which yields 

p ( T )  = D (l/D-T) + D sinh T + D f ' l / ( c ~ + S ) - ( ~ ~ ) ] / 2  + Dln ( c q ) - x  ( T )  3 

x 2 ( T )  = D cash ( T - l / D )  - D S i &  "I - D + Ml/(a+B) - ( w B ) J / Z  

\ X ~ ( T )  = 1 - Dln(wB) 
\ 

Since u = x and 01 + B = exp r(1 - u)/D], the  l i m i t  as T * a yields  3 
x1 + x2 = -u - D 11 - exp r -  (l-u)/D]) f o r  u = 1 - D I n  ( a  + a) (22) 

which reduces t o  equation (17) i f  u = 1, and t o  (21)  i f  u = -1. 

property of equation (19) and the same argument, the other boundary equa- 

t i on  f o r  -1 < u 

By the  

l can be deduced from (22)  a s  - -  
-xl - x2 = u - D E 1  - expr-(1 + u)/D]] f o r  -u = 1 - D In  ( O W ~ ) .  (23) 

Equation ( 2 3 )  reduces t o  (18) i f  u = 1, and t o  (20)  i f  IL = -1. 

eqmtions ( 2 2 )  rnd (23) determine the  maximum controllehle region (Fig. 3)  

f o r  -1 

with those* given i n  F r i e d l a d ' s  piper r183 tihen c sca le  f ac to r  of 3.739 

Consequently, 

u < 1. Fig. 4 shows the regions f o r  1 / D  = 3.739, which agree - -  

f o r  the  x and xz :.xes :ire considered. 1 
I-. THE OSCILLATORY SPACE VEHICLE PROBLIBI 

I n  the design of s n  cutopilot  f o r  c l a rge  f l ex ib l e  s p c e  vehicle 

the problem of bending moments relcted t o  the wind d i s t u r k n c e s  is  of 

re lc  t i vc  imyorknce . When the motion-controlling G c t w t o r  has sature t i on  

3.I.l-iits 01: both posit ion :nr? rc te ,  the design problem i s  quite involved. 

AL: rgl.t?, the autopi lo t  shofid bc capable of mrneuvering the rictuator 

i n  i' most e f f i c i en t  mrnner uh i le  encountering the worst wind disturbance. 

* I n  E private ccmmlmi,-etion with D r .  B. Friedland of General Precisiop, 
Inc., L i t t l e  Fal ls ,  Nev Jersey, ue agreed that i n  Fig. 6 of h i s  pper r183, 
the syale of the ql-z xj  s sholi7.d CL r r y  negetive signs. 
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Therefore, an i n i t i a l  investigation is the determination of the  worst 

disturbance that can be handled by the avai lable  actuator  i n  a f ixed 

t h e  in te rva l ,  The control  inputs generated by the ac tua tor  t o  seme 

tlhis purpose are called extreml inputs. 

5.1 Problem Formulation 

When the angle of a t tack  i s  small, the longitudinal motion of the 

vehicle  can be described by a system of l i n e a r  d i f f e r e n t i a l  equations. 

I t  is aisumd that (a) a pole of the plant  t r ans fe r  function a t  the 

or ig in  in the frequency dumin is cancelled by means of sane canpensating 

device, and (b) the &unpin& is neglibible, and the plant t ransfer  

function is es sen t i a l ly  d d n e t e d  by a pa i r  of almost purely inmginary 

poles. 

undamped oocl l la tory  syetm. 

f l ex ib l e  vehicle systems. For the convenience of analyeis,  the control 

variable 18 treated as an a ~ a t e d - e y l l ~  sta te  variable,  and the 

Thw the approximate vehicle can be represented by a second order 

This approxiPation is allowed f o r  mny 

equation of motion i a  nornmlized as follows: 

&/at = ;(t) = Ax(t) + bv(t)  on 0 - -  < t < tl 

where 

X [ :] e 
Y v =  u, A =  , b =  

5 = normlized m n t  po8ition, u ( t )  = nommlized thrust deflect ion with 

1uI - < 1, v ( t )  = normalized thrust  def lect ion r a t e  with 

value  of k is grea ter  than or equal t o  2, which allows the extxwml 

control t o  en ter  upon and exit from i ts  bound once every half cycle of 

the osc i l la t ion .  The three-dimensional coordinate system is  so chosen 

tbat the origin is an equilibrium state .  

- < x/k. The 

It is required t o  determine en 

extruml v ( t )  which steers the system (24) from the or ig in  t o  a furthest 



point x i n  a given direction i n  a fixed time t. This is again a boundea 

phase-coordinate control problem and a l l  known results on t h i a  type of 

problem apply. 

By t he  s a m e  argument, which was based on Gernkrelidzele r1,23 result, 

the " to ta l  adjoint vector" A t )  must sa t i s fy  the relation 

-A1  p(t)  , if \x3! < 1, 
= ( 

-A1 p(t) ,  if 1x31 = 1, 

where ( ) I  = transpose of ( )  and 

A =  

Thus 

i n  which 
/- 
+1, if p 7 0, 3 

rgn P3 =k, if P3 = 0, 
if p3 < 0. 

is allowed certain Jump discontinuities a t  endpoints of ' p3 Furthemore 

intervals where 1 1  I = 1; and p ' = 0 whenever I x  1 = 1. 

5.2 The Rtreal Controls 
3 3 3 

L e t  K(t) = {x( t ) (x ( t )  = e bv(8) de, lx3\  f 1, 1v1 5 x/k) 

be a ret of a t t a inab i l i t y  at t- t. The t rswver8al i ty  condition implies 

that for every unit  vector 1\ in R there is a state vector x corresponding 

to a point an the boundary of K ( t )  for'. fixed t 8uch tha t  the projection, 

P, of x onto i s  a ma-. Moreover, the corresponding unique admissible 

e X t r e i U l  v(8), which maxMze8 P, steer8 the system (24) fmm the origin 

3 
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t o  the furthest point  x in the direct ion ‘fl I n  a f ixed ti# t. 

suff ic iency condition [93 shws that 7 is the  ad jo in t  vector a t  tiae t, 

Rusrell’r 

and v is the minimal-time cmt ro l .  

The extreaal  v which aaximizes P can be determined by inspection f o r  

every f ixed e, and t. Since P(S; t, e, @) = -P(s; t, a + e, - a), 
it suf f ices  t o  consider onlybalf of the range of 8.  

a typ ica l  case of h = 2.5, 3 / 5  2 8 5 4x/5, with l l r r / y  < t + 8 < 1k/5. 

The form of extrema1 v(s) is 

Figure 5 shows 

(a) f o r  n/2 > $3 - > tan” [coe(6r/5 - e )  - cos 83 - > 0 

r 2 . 5 / n ,  if o < < 2 ( t  + e)/3 - m / i 5  = s1 

i f  T2 < s < t: 

o r  
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or 

A 

0, ir T~ 

2.5/~, if  T~ < s < t - Z ( X  - e) /3  = s2 

8 < t - 4(n - e)/3 = T~ 

The acme procedure was carried out f o r  a l l  possible mnges of 8 and 

t. It was found tha t ,  i n  general, the extrema1 v(s) reaches zero and 

leaves zero as often as the length of t permits. Denote the time a t  

which such events occur by li, i=1, 2, ..., 2N, and l e t  ‘r0 = 0, rZWL= t. 

dp3/ds = d* /ds f o r  rZi 5 8 < T2i+1, i=O,  ., 8; 3 
ana 

p3(s) = o f o r  T 2 j + l Z  * < T2j+2, 3=3, * * * ,  N-1; 

where is a canponent of 6 satisfying d$/ds = -A‘*. AS indicated i n  3 

i=o, . . . , 8, yields p ( e )  being zero and ccntinuous a t  ‘2i+1, and 

consequently the jump conditions must be satisfied a t  T ~ ~ ,  l=O, . . ., N-1.  
3 

Since 7\ is the uni t  addoint vector a t  time t, p3(t)  = $,(t) = T3 = s i n  @. 
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Theref ore 

where 

8, = direction l imi t  f o r  7\ a t  which p has a jump discontinuity 3 
(9, is a r ea l  number). 

discontinuity a t  s = t which happens only when Ix ( t )  1 = 1. 

form of extrenml v(s) can now be expressed as 

Thus p3(s; t, 8 ,  8) has a t  moat one jump 

The expl ic i t  
3 

I n  Figure 5, the  function p for the typical case is also sketched. 3 
The formulas for parameters T ~ ,  i=1, 2, ..., 2N, 6, and pIo a r e  determined 

for a l l  posrible choices of k - > 2, 

A l l  the reeulta are tabulated i n  Tables V I 1  and VIII. To m e  these tables, 

f i rs t  locate the Case Number fram Tables VI1 f o r  the appropriate ranges of 

0 5 8 5 x ,  %/2, and 0 - < t -. 

k, t and 8.  Then on rPablerYI[II, for every Case number and every range 

of 8, a r e t  of parameters of it, i=l, 2, ..., 21, 8, and pIo are given. 

60 C O I C L X J S X ~  

The aaalyrlr presented in t h i r  report is a direct  application of the 

0pt-l c a t r o l  theory. 

rufflclent conditions of the optippal control with bounded phase-coordinate 

The 8Cht!EE, which Is bard an the neceraary and 



1 
il 

._ .. I, 

c 

\ 

'\ 

00 
- -- c 



I 
1 

- 1  37 

- -  k k rn elm 

' b  
1 
19 
3 
1 

I ! .  '. I 

. .  

w ' Y -  

? 
v t 

L 

c 
I. 
I 
I 
3E 
it 
n 
E 

+ 



I 
I 
I 

! 

j 

i 
I 
! 

! 

i 

i 
! 
I 

i 

$ 
0 m 
V I  

w 
k q 

! 

. 
E 

a 



39 

I 
I 

(3 

t E 
W E 4 

I 

i 
j 

i 

i 

! 
I 

i 
I 
I 

$ 
I 
I 
I 
J 
1 
! 
i 
i 
! 

I 
I 



I '  

: i  

i 

i 



& .- - - -1 
! 41 

y 
A 

n 
sa 

I 

1 

i 
I 
I 

! 
i 

1 
I 

i 
i 
I 





.- 

1 I 'r I 

b 

t 

' 0  

43 

:. < 
II 

' Y  

- 4  



44 t 
I 
1 
E 
I 
t 

1 
1 

R 
I 
s 
1 
I 
I 

Prrhes it p s i b l e  to  express the control  a8 an e x p l i c i t  t i re  function. 

In the example of the unstable booster control  problem, the result0 

are tabulated and rketched f o r  a canperison with thore in the publirhed 

l i t e r a t u r e  [la, 193. The lnve8tigation of the  o rc i l l n to ry  apace vehicle 

reveals the s t r u c t u r e  of the extrema1 control  ver i rble ,  which a r c i l l a t e 8  

i n  accordance with the  osc i l la t ion  of the  controlled vehicle. 

7. K A I O F m l ! u R E W O R K  

The Inmediate s t e p  w i l l  be a study of an derdaaped osc i l l a to ry  

plent  w i t h  bounded amplitude and rate control.  

yield the nature of the the-opt-1 control function for a process with 

The i m e r t l g a t i o n  will 

a pa i r  of cauplex conjugate charac te r i s t ic  roots. 

A t  this point, the rerearch can be divided In to  three p l a l l e l  peths: 

extend the study to the m e  processes b u t  with i n t eg ra l  quadratic (a) 

cos t  c r i t e r i a ,  (b)  independently simulate the  same problems on a computer 

and compare the data so obtained againot those from analy t ica l  reoul t s ,  

and (e )  study the same time-optimal control  problems ana ly t ica l ly  except 

that one of the s t a t e  variables be also bounded (so f a r  the bound is only 

applied t o  the augmented s t a t e  variable, viz.  u = x3). 

[l,Z] necessary conditions imply that the ad jo in t  solution has cer ta in  

Gamkrelidze 's 

jump discont inui t ies .  However, his  results do not indicate  haw nnny 

discont inui t ies  w i l l  occur. So f a r  i n  all our investigations,  only 

one bounded sta te  variable  i s  involved. The results indicate  that there 

is  a t  most one d i scmt inu i ty  whtch can be arranged a t  either the be@ming 

or  the end of the time interval .  I t  is therefore conjectured that the 

number of jump discont inui t ies  i n  the  ad jo in t  solut ion is the same as 

the number of bounded s b t e  variables. "hie conjecture r e i n s  t o  be 

shown i n  the above study (pe r t  (c ) ) .  

Next, the investigation of a bounded phase-coordinate problem hving 
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one r e e l  and a F i r  of complex conjugate charac te r i s t ic  roots will be 

s ta r ted .  It is  intended t o  develop en algorithm f o r  the  tire-optlmal 

control problem first, and then an algorithm f o r  the problem6 with inte-  

gral quadratic cost  c r i t e r i a .  

caaputer, and the results evaluated. 

These algorithms will be pragraPlaaed on a 

The simulation w i l l  again be carr ied out in the following order: 

(a)  construct analog simulation of plant and controllere, (b) develop 

block diagmms of control lers  sui table  f o r  fu ture  mechanization, 

( e )  

prac t ica l  control systems, (a) 

expressions, and (e )  

the control ler .  

develop simulation, analog and/or digital, suitable for teat ing of 

compare with the r e su l t s  from analytical 

t e s t  various ideas f o r  s i m p l i f y l ~  and approximating 

Finally, the same steps of investigation will be applied t o  the same 

class  of control problems for l i nea r  time-varying processes. 

e r e  available f o r  p m c t i c s l  systems, these systems w i l l  f i r s t  be approx- 

imated by third-order systems, then cauputed and simulated by the methods 

developed i n  t h i s  research. 

determine the re la t ive  merit  of th i s  research. 

If date 

A careful check of these results will 
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OFTIMAL COETROL OF A " A   POI^ 

DIRECTION SUBJECT To RAlcwM DIS!WRBAEE 

1. IRLIROAICTION 

After the t a rge t  is located, the general control problem f o r  the 

antenna pointing system Is the problem of direct ion lock-in. 

antenna ryatem which is  mounted on a space vehicle, the e f f ec t  caused by 

randan disturbances is significant.  Basically, the purpose of the antenna 

system is the tmnsmission of informstion. Since the e r ror  rete o r  tmns-  

mission is d i rec t ly  related t o  the direct ion pointing error,  the control ler  

should be designed t o  minimize the e r ro r  ra te .  

re la t ion  between the e r ro r  r e t e  and the pointing e r ro r  is sketched i n  

Flgure 6. 

c lass i f ied  i n t o  four  zones, viz., good performance, f a i r  per fomnce ,  

tranait ion,  and poor perforrasnce. The corresponding zones f o r  pointing 

angle i n  the coordinate system of pointing direct ion is shown i n  Figure 7. - 
With the meaeure of pexformence so defined, the control ler  is assigned t o  

operate i n  two modes as folluuu: 

Mode 1--Mode 1 is In i t i a t ed  by the entry of the pointing angle i n t o  the  

For the 

Graphically, E typical  

The measure of perfonaence of the control ler  i s  a r b i t m r i l y  

good performance zone. I n  Mode 1, the control ler  generates D 

control input which minhizes the probebili ty of entering the 

t r ans i t i on  zone a t  any instant  during acme fixed time in te rva l  T1. 

Mode 1 is tenninated by the entry i n t o  the poor performance zone. 

Mode 2--Mode 2 is i n  e f f ec t  whenever Mode 1 is not. 
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In Node 2 t he  control ler  generrter control input  which mri- 

rite8 the probabi l i ty  of cntsring t h e  good performnce cone a t  

r a c  i n r t a n t  during acme fixed tire in te rva lT2 .  

Thur the o p t m m t i o n  procedure cgn be carr ied out i n  two rcpsrnta 

p rtr : 

r2, ( 8 )  Detelmine the time in t e rvs l r  T1 and T2, end the mail rl, 

3 and r of boundary c i r c l e r  of the fou r  zone8 (me F b u r e  7) by mini- 

mizing the error rate with respect to TI and Te, and t o  rl, rZy and r 

In each mode of operation, datemine the control input that 
3' 

(b)  

miniricer (or mxirriter) the appropriate probabili ty.  

Rart (b) is defined a s  the o p t l m l  control  problem of the antenna 

pointillg direct ion.  

cat ion of 'the result8 by Pontryegin and Wishchenlto [l], is prerented in 

the follapiw rectiona.  

two emll conrecutive tire i n t e r n l a  are aer~aed  r t a t i s t i c a l l y  independent 

and hence the rerpome 10 a k r h r  procemr r22]. 

t ion,  therefore, ea t i s f i e8  the K o ~ o m v ' r  backward equation. The 

derivat ion of the general fom of the equation is included in the Section 

2, which a l s o  rerves the purpoee of revlew. Section 3 out l iner  the Minh- 

chenko's punwit problem [l]. The mterlal i r  not new but  an odited am- 

lpary of Mlrhchenko's work. 

stand the problem, as w e l l  as the method of rolvlng the probler. 

4 gives the problem statem#nt. 

in such a manner that the method ured i n  the pur ru i t  problem can be applied 

pravided cer ta in  conditions a r e  met. The technical  deve lopent  and dim- 

cusaion on the antenna pointing direct ion and the height of vehicle con- 

trol problem ere given in Section 5 end the ccncluriocl of the invert lgat ion 

in Section 6. The f low char t s  of computer program for evaluating rurfacc 

An amlymlr of this problem, which 18 a d i r e c t  appli- 

In the amlymlr, the mndapp dirturbancer in any 

The probabili ty d i r t r lbu-  

It i r  intended to help the reeder t o  under- 

Section 

The p i ~ o c e d u n  of inverti(pt1on I8 armnged 
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in tegra ls  and solving Fredholm equation of the second kind a r e  included 

i n  the Appendix. Section 7 outlines the plan of future  work. 

2. GENERAL Pol44 OF KOLMWROV'S BACKWARD EQUATION 

I n  t h i s  section the general form of Kolmogorov's backward equation 

and i t s  derivation 6re  discussed. 

oiitline the essent ia l  properties of randm processes the t  a r e  governed 

The purpose of t h i s  section is t o  

by t'ne equation. 

tlirbznces, the geneml form reduces t o  the famil iar  backward diffusion 

With cdditionel conditions imposed on the random dis- 

eqw t ion.  

Consider the process whose dynamics e r e  described by the d i f fe r -  

e n t i a l  sys tern 

dx = f ( x , t )  d t  + dn (2s)  

where x and n a re  the m-dimensioml s t a t e  end distiwbance vectors, res- 

pectively; f ( x , t )  i s  sssimed different iable  with respect t o  both x and t 

almost everywhere. 

be writ ten a s  [ZZ]  

I n  e. small. time in te rva l  6 t ,  the change of stette cen 

6x = f ( x , t )  tit + s n  + 3(6t )  ( 2 6 )  
3 st) i n  which 3(6t)  i s  such the t  lim 

6 m  
& = 0. It is assumed t h a t  the 

distmbences Bln and G2n i n  any two smell consecutive time intervals  

€jlt end €j2t e r e  s t e t i s t i c a l l y  independent. 

essumption i s  equivalent t o  the condition t h a t  the 7-process has inde- 

Let 6n = 76t, then the 

pendent increments. In tu i t ive ly  the x-process i s  Markovian since the 

6x is affected by the value of x a t  the end of the previous time in te r -  

val but not the value e t  any instant  pr ior  t o  t h a t  end point. For 

l i n e a r  systems, the necessary condition f o r  x-procees being Markovian 

is  given i n  the following theorem. 



Theorem 1 

Con~~iber  the l i nea r  process i n  which the var la t ion of the s t a t e  i n  

a mall time in te rva l  i s  

(27) 8~ = A ( t )  x 6 t  + C ( t )  v ( t )  6 t  + 0(8t) 

where A ( t )  and C ( t )  a r e  measureble m t r i c e s  on [t ,tl] with appropriate 

dimensions. 

has independent increments. 

0 

If the x-process i s  Markovian then the disttirbance ?l-process 

The proof i s  sketched e 8  follows*. L e t  X ( t , r )  be an n by n matrix 

sa t i s fy ing  the relat ions 

from which the covariance met r ix  of the x-process et a seqiience of time 

ins tan ts  can be complrted. By applying Doob's theorem on Markov process 

i n  the wide sense [23, Theorem 8.1, p. 2333, the Theorem 1 ::an thus be 

proved. 

Let In( iv)  = Ere iv'n, 

be the character is t ic  function of n where v is  en a rb i t r a ry  vector having the . 

same dimension as t h a t  of n, E denotes the expection value and ( ) *  = tmns-  

pose of (1. Let F = F(x,t,iv,Gn) be a functional sat isfying e6w = 46n(iv), 

then F is cal led a disturbence functional. 

. 

* The proof is  suggested by D r .  Glenn E. Bexter, Professor of Mathematical 
Sciences and S t a t i s t i c s ,  Purdue University. 



The disturbance fimctione.1 

increments. 

Proof [223 - 

iv' 6 n = n E e  k 
k 

k 

6 t  f: Fk = e  

L e t  $ ( z )  be same a rb i t r a ry  

where e is an a rb i t r a ry  vector. 

Proof [223 

Only the cese of sca le r  7 

is additive i f " t h e  noise has independent 

functional having all i ts  p r t i a l  derivatives 

Let V = d/dz,. Then E@( z+n) = Qn(V )a( 2 ) .  z 1. 

end scalar  n will be sham. The vector 

case c m  he extended by a 8imile.r procedure. Compute 

OD 

.Qn(iv) = E eivn = ' li.. E[nk (iv)k/k !] 
k= 0 

The Taylor s e r i e s  of $(z+n) about 2 is 

(b 

$(z+n) = ' 1 _. (nk/k !) dk g(z)/dzk 
k= 0 

k=O 

hence E @(z+n) = 4n(vz) $ ( t ) .  

A l i nea r  d i f fe ren t ia l  operator will now be defined which describes 
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I 
the general  fom of Kolmogo~w~s bckwerd equation. 

y = x(8 + 8s), G = a fixed Bore1 se t ,  G C ?. 
Let t = s + 8s > I, 

L e t  P(G,tl;,s) be the 

t r ans i t i on  probabi l i ty  function, i .e.,  Prcy E Glx(e) = h x], and p(y,t lg,s)  

be the  corresponding density. 

y = x( 8 + 8s) = x( 8 )  + SR + O(6s) and hence by equation (26), 

For a s-11 time in te rva l  [s, III + 8s), 

Since E 

Hence by 

By Lemma 2 and the def in i t ion  of the  disturbance functional F, 

E g(z + sn)  = 4&) B(z) 

A A 
L e t  z = x + f (x ,s)bs,  then (30) becunes 

B u t  by the  llaylor s e r i e s  expansion about x, 

pr(G + f($,s)bs) = pl(̂ x) + 6s f(G,s)' v; p(;) + 9(6s2) 

hence 

A 

= g(x) + 6s u (b) a(;) + O ( W  (31) 

where U A 

is  the l i nea r  d i f f e r e n t i s l  operator, f(2,s)'VjZ is the system operator and 

F( g, s,vf,6n) i s  the disturbance operator. 

= f (p,s) '  V; + F(f,s,V;,Bn) 
( X I S )  
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Theorem 2 

If 6n = f: 6k n where 6 n's 8 re  s t e t i s t i c e l l y  independent, then k k 

Proof This i s  e d i r e c t  conseqsence of Lemme 1 r,nd the def in i t ion  of F. 

Theorem 3 

The Kolmogorov's be ckr!erd e q m  t ion 

holds for s < t w i t h  terminal candiCions - 
{l, if  y E G o s  s t, 

3, i f  y p G as s -. t. P(G,tI;,e) = 

A m k t  x = x(s)  E H c H and z = x( s-6s). Then 

Since z - 2  end 3(Ss),!6s + 0 as  8s 0, hence 

The terminal ccnditions a r e  sa t i s f i ed  by t r i v i a l  reasons s ince i n  zero 

time Interval,  the  probabi l i ty  of change of s t a t e  i s  zero. 

Theorem 4 
A A 

Let P = P ( G , t l ~ , s ) ,  6x = 3 t h  component of vector bx, and 3 

, 

! 
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b ( ; , a )  L l L p a  
3k 88 -D 0 

(E 8kJ 8 ; k ) , b .  If the disturbance 6n i n  any small 

tlme i n t e n a l  is s t a t i s t i c a l l y  independent and gausslan distributed with 

zclg 1-11, then the KolmOgOrov'8 equation becamerr a backward diffusion 

equntion 

with the same terminel conditions. 

+ fk 8n + 6n 8 /Be + 3(8s) /8s  3 P k  
A 

= 8% 

In a smll time interval  88,  f(:,s) 6s is  the mean of 8x r23, p.2731, 

hence E f 6 Theref ore 3 "k= f J E 6 % '  
* h  E 8 x J 6 ~ / 6 a  = f E6 + f E5n + E6n 6 /€is + O(Ss)/Ss 

3 %  k 3 3 %  
'6s t 3(6s)/8s. 

= E V g R '  

3k 6s - 0 Consequently, b (x ,B)  h = lim ( E  6:36<)/S~ 

= l l m  (E 6 n j 6 ~ ) / S s  
6s - 0 

Since 6n is gaussian distributed with zero mean, then 

ISn(iv) = E e iv'bn 

= E expf X (iv,) €inhl 
h 

= 1 + IV E 6n + A 2: c ( i v  ) ( ivk)  E 6nJ6"k +... J 3 k  h 
h 
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But  log (1 + w )  = w - $: w 2 + 1,'3 w 3 - ... f o r  < 1 

L e t  i6,(iv) = l + w  

Then w = 3 2 ( i v  )(ivk)E 6n 6 
3 k  

Therefore log 4 

3 J "k + * * '  

( i v )  = 8 G C ( i v  )(ivk) E 6n 6 
j 3 " k + * * *  j k  

6n 

By definit ion,  log @6n(iv) = 6s F(;,s,iv,Gn) 

hence, by replacing i v  by 0; and t8ke 6s 0 as e l i m i t ,  

c + It Y b (x,s) A m. a2p 

j k  jk xJ "k 
= c fi (X,8) 

i 

Corolla q 

Let 6n = 11 8s. If 11-process is  a Wiener-Leoy process, then the 

backward diffusion equation holds. 

- Proof Since 7-process has stationary independent increments, and V(s) 

I s  gsuerian dis t r ibuted with zero mean, it I s  equivalent t o  the condition 

t h a t  6n I n  any small time interval 18 s t e t l a t i c a l l y  independent and gausslan 

di8tributed with zero mean. Hence the proof follows Theorem 4 .  
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3. Igg WRSUIT PROBLPM ll] 
The p u r s u i t  problem can be etated as follows. L e t y  be the n-dimen- 

sional s a t e  vector of a system defined by 

(,,'at = f (y , t ,u)  

Y(0) = f  
where u is the  k-dimensional ccmtrol vector and f the  m-df.men6lonsl 

measuiable vector with k < m. Let z be the  stete vcc ts r  of e randaly - 
moving point. 

with t r ans i t i on  densi ty  

Given t h a t  z is a sample function of a Markev preceas 

where the r igh t  s ide  of the equation Is the cend i t loml  prebabi l i ty  density 

associated with the event z(T) = 6 given the event z (U)  = f 

Z ( Q )  a r e  random variables  while 6 and 

(~(1) and 

a r e  numbers), It is arsumed that 

the Markov process is continuous with probabi l i ty  1, and su f f i c i en t  part ia l  

der imt lves  exist. The problem i8 to u which ma~cimlzee the probabili ty 

t h a t  

!I z ( 4  - Y ( d l  e 

for a given C > 3 and for some 7 do, TI where T is given. 

This problem is solved as follows. The functional SU(U,t,~) is defined 

as the probabili ty t h a t  the  randomly m d a g  point is ceptured between times 

d and 7 given t h a t  z(0) = P, and that the control function is u. 

functional tu were available, it would be straightforward t o  apply the 

mximum principle,  and thus solve the problem. 

l i ne  of Pontryagin's approximation t o  $,( 0, F,T). 

If the 

The fallawing is an aut- 

The f i r s t  s t e p  is t o  show that $u(U,p ,~)  is a solut ion t o  . 

i 

subject t o .  the boundary conditions 
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$,b, p, 4 ! sa = 1 

where Sa = surface defined by 1 C - y(O)(} = E, 

c = z(a), 

for a l l  6 > 0, 

f b  

ei(s,7) = o(expll111) i s  continuous. 

(o,V)J is  continuous, bounded and positive definite,  

A solution i s  then obtained i n  the form, with z ( 0 )  = - 2, 

tu(o, 3, T) = m-2 r(o, 2, T) + o ( ~ ~ )  

where m i s  the dimension of the state space. For the case where b i s  

independent of d o r  t ,  r is  given by 

r(o, Z, T) = ro(3, -z, T) + r,(o, Z, T) 

where 

Ai = eigenvalues of fb  3, ij 



- 
~ ~ ( 7 )  = eigenfunction eatisfflng 

3 = a contlauous closed surface defined by 

- a 

8 E angle between the  vector p iron to  and the normal t o  S a t  1 S. 

4.  pRoBLI# STA- A I D  MEPEIOD OF IMVESTIaATIOli 

This section states the generel problem of in te res t .  The method of 

investigation and the preparatory canputation of t rans i t ion  densi t ies  a r e  

a l so  presented. 

4 .1  Problem Statement 

Let the motion of the vehicle be described by a system of d i f f e ren t i a l  

equations. It is convenient t o  nonaalize t h e  equations as 

dx = f ( t , x )  d t  + B(t) u( t )  d t  + C(t,x) dn (33) 
- 

X ( t J  = x 

where x is the system s t a t e  vector; u i s  the control input vector; n is 

a sample vector of a random process; f is the system-prameter vector 

which is assumed t o  be different iable  with respect t o  both t and x almost 

everywhere; B and C a r e  m t r i c e s  with appropriate dimensions. As a rule, 

I 
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the  dimensions of vector8 u and n .are laver than t h a t  of s t a t e  vector x.  

It I s  known the% if the disturbances dn i n  any two smell ronseciitive 

tlme Intenrela ere s t a t l 8 t i c a l l y  independent, then the respanee x t o  the 

System (33) is a Msrkov process t‘22l. AIB ahown i n  Section 2, f o r  Gaussian 

clleturbance An i n  any small tlme in te rva l  As, the tmns i t ion  probabili ty 

function P(G,tly,s) where y = x(8), s a t i s f i e s  the beckwsrd diffrrsion 

equation 

for t > s > 0, i n  which - 

for 8 fixed t end a fixed Bore1 s e t  C. 

For the purpose of diecussion, a s sme  the system s t a t e  is i n  e 

s i tua t ion  such tha t  the control input u I s  in Mode 2 of operation as 

defined i n  Section 1. 

the  good perfonmnce zone in the f i n i t e  time Interval  r t , t o  + T2J. 

outlined i n  Section 3, Mlshchenko rl] showed thst i f  the s t e t i s t i c s  

of the  x-process e r e  deecrlbed by eqmmtion (9), then f 

eatisf  ies the same equs t ion  

Let $,(t,x,to + T2) be the probabili ty of entering 

As 

fu( t ,x ,  to + T2) 

with boirndery condition8 ),(t,”x,t0 + T2) = 1 f o r  e l l  t, and 

end 1 ;I\ > r3. 
= =3 + T2, 2, to + T2) 0: 3, where 11 tu( to 

!he problem irr t o  deternine 6 ,  which a func t ioml  dependent on u, 
l 

and chooee e control u tht Pgximizcs +. 



4 .2  Method of InvestigetSon 

I n  order t o  cpply the  results of the  purs- i i t  problem (Sestion 3), 

F i r s t  of e l l ,  the the  method of invest igat ion is olitlined as  follows 

system is  asslmcrl t o  be l i nee r .  To be more precise .  it is desired t o  

detem,Sne the control  veztor 'I which meximi~es 

Pr r'1 x ( t ) \ \  - < r,I for  come t e r to.  to + TIJ 
4 

s*r%ject to 

dx = rJ.(t) x + E(t) I l ( t ) h t  + c ( t , x )  an 

x(3) = x i 
where x is 8n m dimensionel vector.  

A is ~n m by TT. rnensweble metrix, 

11 i s  F n  h < m dimensional vector, 

R is en m by h measymble mtrix,  

n is F k < m dimensional semple vector of a rendom process. - 
C is pn m Fy k mersi.imble metrix 

T, end 5 erm given P S  por t  of the problem. 

For t h i s  system, ornpitc t h r  t m n s i t i o n  dens i t ies  of the ?-process defined 

ssib>ect t o  

(37) A(t)  y d t  - R ( t )  u d t  4- = 
Y ( 9 )  = 3 

The m?thod of cpp:wch is motivated by the  sdwntrge of the  s~per- 

posit ion prope?.ty of l i n e e r  systems A proper t rans le t ion  of the  
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: oordina te-system reillices the present problem t o  M-ishchenko-Pontryagin's 

p~rs~r i t  problem which i s  s a m r i e e d  i n  Section 3. Thi-is: i f  the statisti2s 

of the 7-pr.ocess i s  i n  r.gLcement with the hypotheses for  the  p l i r s i i t  

pz*otlmn. then the know ,ess i l t s  ':en be Iised t o  complete the sollition 

The ::ampitetion of the t.iansition dens i t ies  of ~-p.-ocess. whinh is  

i.eq>riwd fo-r the emlwt io i i  of Pr [~z.-y!l < r 3, is presented i n  SeTtion 4 . 3  

4 ,  ? 
- 3  

Complitri t i on  of Transition Densities 

Consider the sto-:lie s t i?  diffe--entir:l system 

dz = A ( t )  d. t  -t C ( t )  dn 

7(3) = 3 

where 7 is en m dimensionel vector, 

A i s  cn rn by m measin-eble mntrix 

C is en rn Y8,y !I rnePsi>.Tp?>le n&t:d.x, 

n i s  en II dimensionel (ti < m )  sample vector - 
of B =niiom process with independent and orthogonel. increments 

Arcording t o  Dooh r233, the  integral  C ( t )  dn i n  the u s f w 1  S t i e l t j e s  

sense (yoes not e x i s t  w i t h  probnkili ty one becalise the sample f ,mct ions 

of processes w i t h  independent increments are of lmho!inded var ia t ion  with 

probcbi l i ty  one This i n t e g m l .  however, can be redefined 8s e stophest in  

i n t e g t a l  r233 so that it does exist,. Under t h i s  definition, the l i m i t  

of the seqlience of S t i e l t j e s  siuns ex i s t s  i n  a " l i m i t  i n  the mean" sense. 

The soliltion of system (38) i s  known 8 s  c233 

t 
7 ( t )  = J o ( t ,  7) c ( i )  an(T> ( 39) 

0 

where @(t, I) is t he  m by m continrious mtrix S8tiSfying 

7 )  = A ( t )  @(t, T),  

= i den t i ty  metrix 
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and the  Integml i n  (39) is e stochastic I n t e g m l .  

To f a c i l i t a t e  the  discxssion l e t  

end 

where 

Ti = rl end T = p, 
0 

ere mnciom veriebl-es. The t rans i t ion  densi ty  

where the F'S ere defined i n  Section 3. 
i 

The seqiienre C I ; ~  5 -,onveyges t o  I i n  a A.i.n sense 8 s  clesc;;,ibeil Fr 

by DooF r233. A q'iestion a r i s e s  P S  t o  the conditions -qmn which the con- 

vergence of p 4 i n  a stiitzhle sense e s  i - - ,  Once the c-onvsr- 

gence i s  es ta t l i shed .  'di?n, (43)  implies t h e t  the z-prowss t,?mnsii;ion 

dens i t ies  .:en be eppi-oximted by the  (ronditlonel dknsi t ies  p . 
I TI 

7p.2 0, 'cl 

The inves t ig t t ion  of the convergent-e p-roklem w i l l  YE: deferled f o r  the 

firtw-e s t  idy. The mmpi?tCtion of the rondlt.ion81 densi t ies ,  hovever. 

w i l l  be disclisscd i n  4he following. 

I n  order t o  2 -:j.lT'zte t h e  d i s r x s i o n ,  the problen wil.3.  l-e :-esk,?.ed 

i n  -the following notption. 

define6 b y  

Let Yks be E! mnndom \re::toi. of ?iin~nsion m 

Y = Q(. f Tk)  C(Q '"(TkSl) - 4 T p  (hl) 
kq 'I 
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end S be e random vector defined. e s  
qr 

r 
s = c Yks 
qr k=q 

To express the ronditionnl density 

i n  terms of n s%tistips 

(1) The Y 

( 2 )  

t h e  following two s teps  ere  ~-eqii~-eii :  

stztistirs w i l l  be writ ten i n  terms of n stztistics.  end 
kq 

t he  desirefl 5 d.ist.t-ib:Itions w i l l  he wri t ten i n  tpms of Y 

statistics. 
kq 

For the f i rs t  of these two steps, consider the  dimensJon of the 

elements of (41 )  : 

Y is  p n  m-dimensionel veTtor, 

n(rk+l) - n(T ) i s  e n  h -? m dimenslonsl vector,  

kq 

- k 

@(rq, 7 ) C(7 ) is  e n  m lpy h metrix. and i s  assmwl t o  heve k k 
rank h .  

Also, superscripts w i l l  be used to  denote vector elements. e g .  the 

,th element of A\ is Ad. Thus (41)  becanes 

'kq = Dqkhnk (43) 

From the dimensional cansinerations s tn ted  ear l ie r ,  ( 4 3 )  represents 
h 

8 mepping of E i n t o  8 subspsce, 3;  of e. The next s t e p  is t o  cons t r ic t  

. . . ,  V be 8n 
hkq Let vlkq, a su i teb le  "c00rdinete" system as follows. 

orthononnel basis  fo r  T. L e t  vlkq, . . ., v .... v be rn orthonormal hkq' ' mkq 
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basis f o r  e. Let V he the  m by h matrix whose coltimnr e r e  v lkqj ' ' 9 vhkq? hk?l 

For . . . ,  v 
lkq' lm' 

and l e t  V 

every Y 

be the  m by m m a t r i x  whose c o l ~ m s  ere  v 
- a q  

kq' 
there  I s  8 ilriiqoe m-dimenef.om1 ve r to r  CY mch that 

'kq = v  mkq *Yko* 
- 

This i s  %me hecrlrse the c~-llmns of V form a basis for e. Moreover, QM 
since the first h colmns of V form FJ b a s i s  f o r  7, then 

9, i = h + l ,  ..., m, 
mkq 

c 7 is equivalent t o  
Ykn 

= 3, i =  h +  1, ..., m. ('iq 'k? 

From (44), 

(44) 

/ I  y I 
'% = ivhkq Dqk ,' 'hkq 'kq 

where ' denotes trpnspose. From (44) end (45) 

' d q k q  3 = '('&q D qk )-4hkqy,  1 1  8 [ ( V - l  Y )i], i = h + 1, ... m 
kq 

where 8 i s  the  D i r a c  d e l t c .  This rmpletes the first of the  two s teps .  

SqrlS3, q-1 
For the  comprtntion of p i t  i s  noted t h a t  the  mndition- 

ing  var iehle  i s  e l i n e r r  nanbinetion of those An's whii.h do not appeer i n  

S Since the An's  a r e  independent, hence 
clr 

ps 1s ( %.I.' s 3 ,  q - 1  1 = Ps bqrL (46) 
qr 3 ,  q-1 q= 

From ( ! + 6 )  end (42), 

ps Is ( s  qr Is 3, q-1 ) =  
qr 3,  q-1 

Y ( 8  q, r-1. 8 qr - 8  q, r-1 1 
9, r-1, rq 

J'asq, r-1 ps 

Since the An's e r e  indppendent:  

(4,7) 
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c PROBLEM OF ANTENNP PormIm DIRECTION 

I n  the pwceding s v t i o n s ,  Mishrhenko’s pirs lit pr-ohlem end the  

r-l-Pvn1; s rh j ec t  were disr-:lissed. The resii l ts  w i l l  now be sppl ied t o  the  

prohlem of EntennP pointing direction. 

5.1 Problem Ste tmen t  

As indiceted i n  Section 4: the motion of the  vehicle is nssumed t o  

gov?rned by a system of lineftr e tochast i?  d i f f e r e n t i a l  eqwtion 

dx = TAX f B u ( t ) ]  d t  + C dn 

x(3) = x (49) 

where x is  B 3-dimensional s b t e  vector;  n is e 3-dlmenaionel semple vector 

of E mndan procees 8iir:h the t  the ver ia t ion  En i n  any two smell conaecI.rtive 

time i n t e r w l s  is a t e  t i s t i c e l l y  Independent end geuesisn d is t r ibu ted  with 
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zero mean; u(t) is B control vector with a dimension 

ere constcnt metrices with appropriate dimensions. 

2oordinate system i s  so choren tbt "1 end x2 define the entenne 

pointing d i rec t ion  and x t h e  dietence between the  spece vehicle end some 

given referenoc point.  

an eqiiilibrirm state a t  which the exer t  pointing d i rec t ion  end the  height 

of t h e  vehicle is obtained. 

cont ro l le r  f o r  the pointing direction end the pointing engle i n  the 

coordinate system i s  shown i n  Figwe 7, i n  which the r ad i i  r r and 

3; A ,  B end C - 
The 3-dimensiowl 

3 
The origin of the coordinete syetem represents 

The relat ion between the  performence of t h e  

1' 2' 
a r e  given. For convenience, the performance of the  cont ro l le r  f o r  r3 

"3 3 -  3 -  3 

the vehicle height is defined i n  e s imi le r  w6y, 1 . e . .  Ix31 < - r39 

< 1x 1 < r2, r2 < 1x 1 < r1 and rl < !x  1 define the f o w  d i f f e ren t  

perfonaence regions. Thus Figure 2 is  eleo e gpph ica l  repi-esentetion 

i n  the 3-dimensionel space of the performence  ones, which p i - e  defined 

by the concentrical spheres, of the control ler .  

It i s  reqi i red t o  synthesize e controll.er whizh i s  r e p b l e  t o  

perfom Modes 1 end 2 of operation according to the  ststis of the 

3-dimensional s t a t e  vector x. 

solved by an appl icat ion of Mishchenko's ptirsiiit problem T l ] ,  which is 

outlined i n  Section 3. 

refoxmila t ion  of the antenna problem is  necessary. 

r .  2 Refonnilla t i on  of the Antenna Problem 

A s  indicated before, the problem w i l l  be 

I n  order t o  apply Mishchenko's reeiilts, 6 

Let x = z - y such t h e t  

d7, = Az d t  + C dn 
- 

z(3) = x 

end 

dy = Ay d t  - B Il(t) d t  

Y ( N  = 3 
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then the  x-process (49) i s  divided i n t o  two per ts  

8n ordinary detenninis t j  c. control problem while the I-process is stochastic. 

For the pnrpose of discussion, the control1.e~- i s  sss7rned i n  Mode 2 

Then the  problem is t o  f ind  E! control i n p i t  ‘1 whicah max- 

The y-system yields  

of opemtion. 

imines the prolvl-i l i ty t h e t  1 x(t)lI = 1 7 ( t )  - y ( t ) ( l  < r3 f o r  some 

t 6 r3, Tz] given thrlt ~ ( 3 )  - y(9) = 2, l\xr 7 rl. 

Since, hy Fssmptioii, 6n i n  eny two smt11 coneerlitive t i m e  in te ’wls  

i s  stF t ist icpI. ly indepenilent Pnd grassinn distribli ted.  it is known 

r22 .  233 t h e t  the 7-p-ocess is  MerkoviEn pnd i t s  tmns i t ion  probehilit,y 

flinztion s e t l s f i c s  the bwkwr rd d i f f x i o n  r-qiption 

uherf P = Prri(-r)CGJ7(T) = F3 for  ‘I 7 0 - > 0. 

G = P fixed Rorel s e t ,  

r r  

Ass me t h e t  e11 t ’ ip  eigenvsl ies of the  s.ymmPt1.ic ~ o v ~ ~ i 0 n c e  m t l - i x  

rh i J ]  e r e  posi t ive rnd bounded, and the Merkov procesR i f f  -ontinlio*is in 

the sense tht for r l l  5 7 0, 

where p(C,u\fl,9 - A7) i.s the  t r rns i t i on  denr i ty  function R S  defined i n  

Section 3. Under these conditione, the res9ilt.a of Miahchenko’s pwst i i t  

problem. which is siumneriied i n  SecUon 3 can he epplied.  

5 .3  Procedure of Ohteining Prohability Function 

L e t  $,,(U,C,T2) be the  p r o b b i l l t y  of entering the  good performance 
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zone a t  some t 6 r3, T21, 9 < 9 C T2, given z ( U )  = C. According t o  

Mshchenko, +u a l s o  s e t i s f l e s  the backward diffusion equation 

- 

Then SU can be obtsined a s  follows: 

(1)  Determine the t m n s i t i o n  density function of the 2-process. 

present case, the scmple vector dn has special  properties by hypo- 

I n  the 

I 

thesis .  

z i s  gaussian dis t r ibuted.  

t ical  conditions on the n-process i n  the present a l so  lead t o  the 

Since the system is l inear ,  it is  known that the s t a t e  vector 

A 8  discussed i n  Bection 5.2, the hypothe- 

conclusion t h e t  the z-process i s  Markovian. 

density of z-process cen be writ ten as 

Thus the t rans i t ion  

E( an) (sn) ' 
6 t  W = lim 

6 t  - 0 
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Note t h a t  a s  0 7 ,  Q approaches C W C' which is  equal t o  8t[b 3, 1 3  
where b 

Determine the eigenmlues AI, h2, .end X 

posit ive def in i te  co=rience matrix [b 3. These eigenvalues a r e  

required for the de t emim tion of the el l ip6oid 

i s  defined by equation (53). 
13  

( 2 )  f o r  the 3 by 3 sylnaetrlc 3 

i j  

3 
t Ai wi 2 r3 2 , 
i= 1 

< where w - i -  
j= 1 

e / ,x, , which i s  a mapping of the sphere - *ij j 

i= 1 i 3  

the Laplace equrttion a2dfu/>wi 2 = 3 .  Here M i s  a rotat ion matrix '-. 
1 

whose i - th  c o l m  is  the orthonormalized eigenvector associated with 

Ai. 

(3) Determine the eigenfunction Vo(~)ss t i s fy lng  

where S = closed surface of the e l l ipso id  defined by equation (56) ,  

w, G = any points on S, 

~(6,:) = distance between two points 

8 I angle between the vector p from 

s a t  f;. 

a 

and 6. 

t o  and the outward noxmal t o  

"hie is  a Predholm equation of the second kind. 

l e  known. 

lo analytical solution 

To determine 45) nttnrerlcally, the eurface integral must be 
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expressed as ordinary double integrals .  F x m  equation (56) ,  the 

e l l i p o l d  can be writ ten as 

Then, equation (57) can be reduced t o  

where the sign i s  determined by the projection of the outward n o m 1  

t o  8 a t  

plane. 

onto the w axis,  and D is  the projection of 8 onto (w1,w2)- 3- 
It i s  known [l, 241 that there ex i s t s  a unique eigenfunction 

which s a t i s f i e s  (57), and hence (59). 

v(a) gives the desired V,(c). 

Determine the ccnstant a f rm the formula 

Thus a numerical solution of 

(4) 

where r (5)  is the distance frm t o  the origin.  For the'purpose of 

numerical evaluation, equation (60) is writ ten i n  terms of ordinary 

double in tegra ls  : 

a r  

( 5 )  Determine the system probability function ro(0,6,7) frcm the fom:crln 



c 6- C+Y( 4 1 'rei It f-S+y( a) 3 
g =  - 

2( T - a )  

f o r  0 < 0 T where - 
5 = z(  0 )  as defined before, 

t = T ( T )  

R = 3-dlmensional Euclidean spLce,  

(1' = transpose of (1. 

(6) Determine the p m t i a l  derive t ives  

from equation (61). 

(7) Determine the controlled probability function 

where v - z(s) f o r  s(ta,?], 

y(r) = s t a t e  vector s a t i s f y i n g  equation (51), 

u(s) = control vector appearing i n  equation (SI.), 

ro(s,v,%) = system probability function defined by equation (61), 

p(v,sI 5,a) = t ransi t ion density given i n  equation ( 5 5 ) .  

Detenmlne the desired probability function for Mode 2 of operation: 

t 

(8) 

where t,(u,s,Tz) was defined In  8ecUon 5.3, 
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n u s  equation (64) gives an approximate solut ion tor the b a c ~ r d  

di f fus ion  equation (54) within an e r ro r  of the order of r 
3' 

5.4 The opul~a 1 Control 

Once the probabi l i ty  function tu( a, 6,T2) is  available,  the o p t h i e a t i o n  

of the  control vector u can be achieved by an upplicsltioa of the rmxlmal 

pr inciple  rl, Chap. I]. Since ro(a,t,TZ) does not depend on u and r is 

a pos i t ive  constant, then froxu equation (64), 

u t n  u t n  

3 

- 
eu(o, x, Tz) - max r,Co, f, Tz> 

where - x(0) = z ( O ) ,  

i 

0 I a r e s t r a i n t  s e t  with SIC A, 

A - class of admissible controls. 

The maximization process is subJect t o  the constraint  of the detennin- 

i s t i c  a p t e n  (51). Let 

then 

The Hamiltonian is 

where !if( t) i s  an rd jo in t  vector ossociated with the d e t e d n i s t i c  system (51) 
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II 
1 

\ 
For the system w i t h  fixed terminal t i m e  and f r ee  end point, it is  known 

tha t  g$(TZ) = 3 from the tmnsversel l ty  condition fl]. 

plays an ilnportant role i n  t h e  optimal control theory and hence it must 

The adjoint  vector 

be determined. With yo(3) 3, y(0) = g$(T2) = 0 and B,(T,) = -1, pl(t) 

can be obtained by solving the two-point boundary va lue  problan. A 

grea t  m r i e t y  of computztional schemes hove been proposed f o r  solving 

t h i s  type of problems with various classes  of perfonnance indices ( the  

f tmct ioml  t o  be e i the r  mximized o r  minimized) and d i f fe ren t  0. 

recent t e x t  books on the relevdnt subject  e r e  those by F e l t  Dbaum [25], 

by Athans and Falb r26JJ end by Lee and Markus c273. 

Most 

Two d-lfferent cases of optimal controls a re  considered as follows: 

If 0 : lu i ( t )  1 < 1, 

max H can be achieved i f  

(1) id, . . . k f o r  k < 3, then from equation (lg), - - 

{ If x >  O J  sgn x = 
-1 if x < 0, 

and u*(t) is an o p t i m l  control ler  which yields  max +u(O, 5, Tz). 

However, when 

ar 
B'r$(t) - J p e dv] = 0 on some subinterval of TO, T2], u?(t) 

R 

i s  not defined and a singular control problem reeul ts .  In equation 

(63), the formula f o r  r1, the Integrand contains a l i n e a r  tern of u. 

Singular eolutions i n  t h i s  type of problems were dircwsed by mrious 

authors C28, 293. 

1 
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(2) If d = A and if control energy U u dt,  where U i o  a k by k 
0 

posi t ive de f in i t e  mtrlx with k 

ously, then the BarniltanIan Is formed a s  H - E + u' U u where H is 

defined by equation (66) Thus d H/dt = 0 yields  

3, must be minimized simultane- - 
a 

.I) 

f o r  t @TO, T2'J, where u q t )  is an o p t b a l  cont ro l le r  which yields 

6 .  

The annlysis presented i n  this report leads to  a scheme of synthe- 

s i z i ~  the optimal control ler  for  the antenna pointing direct ion and the 

height of the s p c e  vehicle subject t o  randan disturbance. The analysis  

I s  an application of Mishchenko's pursui t  problem. The camputatioaal 

fonaulae which a r e  required f o r  the synthesis a r e  presented. Mgital 

cmputer  progllamps and t h e h  flow c h a r t s  f o r  the evaluation of double 

i n t e g m l s  and elgeniunctlons sat isfying the Fredholm equation of the 

second kind are included i n  the Appendix. 

The inmediate s t ep  w i l l  be a simulation study of the antenna pointing 

system on a d i g i t a l  canputer with some data psckage related t o  exis t ing 

vehicles. 

be investiga ted. 

The convergence p r o b l e m  of the ccmputationnl scheme will a l so  

P r o b l w  of time-varying systems with state-dependent noise will 

also be studied. The canputation for these systems is an extension of the 



75 

~ 

t 7 t results i n  t h i s  report  b u t  is much more involved. 

The extension of the method to  higher order systems, especially those 

i n  which the target manifold ha8 e dimension l e s s  than that of the system 

manifold [30'J, will be emmined closely. 

any hidden p i t f a l l s .  

Attention will be focused on 

Once this is competed, numerical data f o r  a physical 

space vehicle w i l l  be used as G test model f o r  the computational method. 

A c a p r i s o n  of the resul t8  so obtained q p i n s t  those from exis t ing 

control  systems is a l so  planned. 

The future  theoret ical  studies include the following items: 

(1) The sufficiency condj,tion on the noise that guarantees the response 
e 

of the d p r n i c a l  sJntem being Markovian and sat isfying the hypothesis 

of the p u r s u i t  problem w i l l  be determined, 

(2 )  The convergence of sequence {%I 1, which was discussed b r i e f ly  i n  

Section 4.3, will be established regorously. 

( 3 )  Along the same l ine ,  an error estlmte f o r  

w i l l  be developed. 9k - srl 
(4) Methods of evaluating (m-l)-dimensional surface integrals  will be 

invertlgated by means of the tensor analysis. 

9 .  A r r i l r m x - m C A L  SVAIxu'I?OB OF WIRI'ACB m R A I 3  

In the follmlng, a numerical method f o r  the evaluation of surface 

l n t y r a l r  In the 3-dlmenrrioaal IJlare-coordimte r p t a  i r  presented. 

methad i a  dmloped for  the evaluation of equation (a), 8ection 5.3, 

The 

a= &J L c 



I I 

where i j  € 8,  

9 i s  the surface defined by 

2 2 
= r3 

' + A w 2 + A w  
xlwl 2 2  3 3  

D i s  the projection of S onto the (w1,w2)-plane, 

v (G) i s  the eigenfuncJon satisfying 
0 

i n  which and G E S, 

1 
(73) p = 

a(;) i s  the surface element vector with a direct ion pointing 

outward a t  G € S. 

- 3,  ( D distance vector) 

I 

4 

It is known t h e t  

as($) = (alj  aZ, 1) dG1 dGZ 

where 

(74) 

i=1,2. 

Combine equations ( 7 3 ) ,  a d  (73) through (75), equation (72) may be 

wri t ten c s  a double in tegra l  

i 
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A n-uneri-:; 2- Incthod f o r  the nanputation of the  eigenfunction 

vo(Gl,c2) associeted wi th  equation (76) i s  as follows: 

( a )  Discret izc  t i on  of cl, G Z J  El, end G,. 

= -r / f i + ( i - l ) A v j J  
J 3 3  

“hen by (7’7) throq-$I (81), eqwt ion  (76) y ie lds  

where 

hf(k) = 1 + (1 + ,/h2 11 - (-1 + 2L-2 )” 1 2 M-1 - J ,. 
( e )  Reclrzangement of vis 

The following l e  a reermngement of the  two-dimensional a m y  v i d  



t -  
i 

li 
8 
1 
t i  
I 

I 
8 
8 
8 :  
8 
8 
1 
1 
8 
I 
8 
8 

1' 

i n t o  the one-dimenslonal a m y  'vp 80 t h a t  It can be cmputed as 

an eigenvector: 

IC v l , h O ( l )  

TI2 = v l , h o ( l )  + 1 

-hf(l)  - h o ( l )  + 1 
V m V  l , h f ( l )  

-hf(l)  - h o ( l )  + 2 = v  2, hO( 2 1 V 

. 

. 
V Q = V  q + l ,ho (q  + 1) + s - 1 

9 
where Q = 7 [hf( i) - ho(i)]+q+s; q=O,l, pb2; l<s< h f (q+l)-h 0 (q+l)+l. - -  ._ 

i= 1 

ThUS the  mapping V is 
1-1 

8 
I s  defined by (1,j) 4 p wi th  

g :  P '  1 [hf(B) - h'(D)] + I + j - h o ( i )  , 

0 

&1 
-1 

6 
(a) The Inverse nmpping p - (1,J) is  given by the algorithm represented 

by the flow chart i n  Figure 8. Under the mapping g, equation (84) 

becanes 

where 

(89) 

(93) 
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[*J 

FIGURE 0 

r t 
j = h o ( M - q + l ) + p - p T - l  

I 



x-1 
Y =  

Thus the 

. I  

80 

(91) 

1 
i 
1 

eigenvector [50q] associated w i t h  the  a a t r i x  [Gq "3 represente 

e d i e c n t e  approximation t o  the elgenfunction Yo(el, c2). 
The eigenvector mentioned above can be obtained as follows. A prime 

considerstion i n  the  select ion of an algorithm f o r  this task is the 

dimensloaality of the matrix [Gq "3. The t o t a l  number of elements of 
4 the  nmtrlx is (M-1) . Thus, if the wl, w2 exes are discret ized in to  4 

23 segaents, the r m t r i x  contains 160,930 elements. This makes it 
t 

I *  
8 
8 
8 
a 
1 
I 
I 
8 
8 

1 8  
I 
1 
8 
I 
I 
I 
I 
8 

impractical  t o  attempt the  storage of the  matrix. For t h i s  reason, 

the  elenents w i l l  be computed a6 they a r e  neede8, using the inverse 

mapping with the exp l i c i t  expressions f o r  0' ' given by (91) with 

associated equations (79) through (99). 

The coaputational algorithm is based on an i t e r a t i v e  technique f o r  

detelmining the maximum eigenvalue and associated eigenvector of 6 

given matrix [3ll. Figure 9 shows a flow chart  which describes 

the algorithm. After the execution of the i t e m t i v e  cycle four  

times, the computed data are  checked against  a specif ied accuracy require- 

wt ( ACC ). If the requirement is met, the process is terminated. 

Othervise the process enters another i t e r a t i v e  cycle. The process i s  

also tenainated If the required accumcy has not been at ta ined a f t e r  

E predetermined number of i t e ra t ions  ( LSTOP ). 

The above describes the procedure of determining V 1 3  . The canputation 

given by equetion (69) is straightfornard.  By a similar procedure, 

can be discret ized ES 



[[] u 'U + 0.1; i = 2, . . . , y  

rn 
I L = L + l , K = K + l  I 

It0 Yer 

Yea 

ISTOP - Predetermined ilcDc * Specified 

mubar of 
iteratiau 

lmum 9 

I 
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I! I 

8 )  I where 

11-1 hi (k) 

I Z  s"JI 
b l  b h o ( k )  a -  (93) 

1 
I 
8 
1 
8 
8 
8 
I I 
I' 
I' I 

Ngure 10 shows a f lm chart which describes the algorithm for cam- 

put- a by equation (93). 



I 
I 

I' 
I 

I 
li 

I 
1 

w u W = O  

.1 

.) 
DEB = 0 

I Ccqnrte ho(k) and hf(k), 

1 k = L o - * ,  M - 1, frcm eqs. (85) & (86). 
I I 

I - i  Compute u 

k = l  

I h = ho(k+ 

.) 

.c 
c v 

- k  - h  - 
Campute wl , w2 , & w3 

& 

1. 

I 
I 

k - h  - DElt = DEN + A / rFl , w2 , w3) 

1 "  
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